
Introduction

Preconditioning by brief episodes of ischemia/rep-
erfusion exerts a powerful protective influence on
the heart [26]. Preconditioning induces both an
early and a late (second window) phase of protec-
tion and it has become the focus of increasing
attention because of the potential pharmacological

exploitation to alleviate the consequences of sus-
tained myocardial ischemia in patients [11, 41].
There is compelling evidence that the cardiopro-
tective effects of ischemic preconditioning (IPC) can
be mimicked pharmacologically with clinically rele-
vant agents, termed pharmacological precondition-
ing. Along these lines, exogenous administration of
many G protein-coupled receptor agonists, such as
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j Abstract Previous studies have shown that the cardioprotective effect
of ischemic preconditioning (IPC) can be mimicked pharmacologically
with clinically relevant agents, including nitric oxide (NO) donors.
However, whether pharmacological preconditioning shares the same
molecular mechanism with IPC is not fully elucidated. The present study
aimed to determine the activation of mitogen-activated protein kinases
(MAPKs) (ERK1/2, p38 MAPK and p46/p54 JNKs) during ischemia and at
reperfusion in nitroglycerin-induced preconditioning as compared to IPC
and to correlate this with the conferred cardioprotection in anesthetized
rabbits. Sixty minutes of intravenous administration of nitroglycerin was
capable of inducing both early and late phase preconditioning in
anesthetized rabbits, as it was expressed by the reduction of infarct size.
Despite the cardioprotective effect conferred by both ischemic and
nitroglycerin-induced preconditioning, there was a differential phos-
phorylation of MAPKs between the studied groups. p38 MAPK was
activated early in ischemia in both ischemic and the early nitroglycerin-
induced preconditioning while JNKs were markedly increased only after
IPC. Furthermore, in these groups, ERK1/2 were activated during
reperfusion. A different profile was observed in the late preconditioning
induced by nitroglycerin with increased p38 MAPK and ERK1/2
phosphorylation during late ischemia. No activation of JNKs was
observed at any time point in this group. It seems that activation of
individual MAPK subfamilies depends on the nature of preconditioning
stimulus.

j Key words MAPK – ischemia – nitroglycerin – preconditioning –
rabbit
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adenosine, opioids, bradykinin, catecholamines,
angiotensin II or acetylcholine, as well as KATP

channel openers like diazoxide or nicorandil was
found to mimic or to reactivate IPC [15, 20, 24, 38–
40]. Recent evidence suggests that a delayed car-
dioprotective effect indistinguishable from the late
phase of IPC can be induced with the administra-
tion of nitric oxide (NO) donors in the absence of
ischemia, which is consistent with the concept that
NO plays a major role in initiating the cardiopro-
tective adaptation [5, 27]. In fact, it has been shown
that nitroglycerin, a NO-releasing agent, which is
widely used in clinical practice, elicits a delayed
cardioprotection against both myocardial stunning
and infarction [18, 19, 35].

The signal transduction mechanisms involved in
preconditioning have not yet been fully clarified, al-
though mounting evidence indicates that protein ki-
nase C (PKC) plays a key role in the signaling
pathways underlying both phases of IPC [33, 42].
KATP channels and several kinases like tyrosine kinase
and mitogen-activated protein kinases (MAPKs) have
been also implicated in the signal transduction
mechanism. However, the reported data on MAPKs
are inconsistent and their role in the mechanism of
protection remains elusive [25, 33]. We have previ-
ously shown that the phosphorylation of p38 MAPK
and p46/p54 JNKs is increased at the time of sustained
ischemia in preconditioned hearts, both by short
ischemia or by acute mechanical stretch, in anesthe-
tized rabbits although this effect may be dissociated
from the protective effect of IPC [21]. Whether the
various forms of pharmacological preconditioning
share the same molecular mechanism with IPC is not
fully elucidated. To date, no data are available with
respect to the role of MAPKs in the NO-induced
preconditioning. Therefore the current study aimed to
determine the activation of MAPKs (ERK1/2, p38
MAPK and p46/p54 JNKs) during ischemia (5 and
20 min) and at reperfusion (20 min) in nitroglycerin-
induced preconditioning as compared to IPC and to
correlate this with the conferred cardioprotection in
anesthetized rabbits.

Materials and methods

j Animals

New Zealand White male rabbits weighing between 2.6 and
3.3 kg were used in this study and received proper care in
compliance with the Principles of Laboratory Animal Care for-
mulated by the National Society for Medical Research and the
Guide for the Care and Use of Laboratory Animals prepared by
the National Academy of Sciences and published by the National
Institute of Health.

j Surgical preparation

All the animals were anesthetized by slowly injecting 30 mg/kg
sodium thiopentone (Pentothal, Abbott) into an ear vein, intubated
through a midline tracheal incision and mechanically ventilated
with a positive pressure respirator for small animals (MD Indus-
tries, Mobile, AL, USA) at a rate adjusted to keep blood gases
within the normal range. Two polyethylene catheters were inserted;
one in the left jugular vein for fluids or anesthetic and one in the
carotid artery for continuous blood pressure monitoring via a
transducer attached to a multichannel recorder (Nihon-Koden,
Model 6000, Japan). A bipolar chest lead was used for continuous
electrocardiographic monitoring. The chest was opened via a left
thoracotomy in the fourth intercostal space and after pericardiot-
omy the beating heart was exposed. A 3–0 silk thread was passed
through the myocardium around a prominent branch of the left
coronary artery. Ischemia was induced by pulling the ends of the
suture through a small segment of a soft tube, which was firmly
attached against the artery with a clamp. The successful induction
of ischemia was verified by ST segment elevation on the electro-
cardiogram and by visual inspection (cyanosis) of the heart. Rep-
erfusion was achieved by releasing the clamp and was verified by
refilling of the artery.

j Experimental protocols

The animals were divided in two series of experiments each con-
sisting of five groups named respectively control, IPC, early
nitroglycerin preconditioning (ENTG10 and ENTG30) and late
nitroglycerin preconditioning (LNTG). For the evaluation of the
MAPKs, animals were exposed to either 5 or 20 min ischemia, or
30 min of ischemia followed by 20 min of reperfusion. For the
estimation of the infarct size, animals were exposed to 30 min
ischemia followed by 180 min of reperfusion. In both series the
control groups were not subjected to any additional intervention
before the sustained ischemia, the IPC groups were subjected to two
cycles of 5-min ischemia of the heart and 10-min reperfusion, the
ENTG and LNTG groups were treated with nitroglycerin which was
intravenously given into another ear vein for 60 min. In the
ENTG10 group the infusion of nitroglycerin was discontinued
10 min before the sustained ischemia and in the ENTG30 group
30 min before ischemia, in order to simulate pharmacologically the
early phase of preconditioning. In the LNTG group the infusion of
nitroglycerin was discontinued 24 h before the sustained ischemia,
in order to simulate the late phase of preconditioning. Nitroglyc-
erin was dissolved in normal saline (50 lg/ml) and was continu-
ously infused via the ear vein at a dose of 2 lg/kg/min as previously
described [19]. The protocol is presented schematically in Fig. 1.
Mean heart rate and mean blood pressure were measured imme-
diately before sustained ischemia (baseline) at the end of sustained
ischemia and at the end of reperfusion.

j Animal exclusions

Twelve animals from the first and second series were excluded for
technical and hemodynamic reasons. Thus, 95 out of 107 rabbits
completed the study.

j Risk area and infarct size measurement

The animals were exposed to 30-min regional ischemia of the heart
followed by 180-min reperfusion. After the end of reperfusion
period hearts were harvested, mounted on a reperfusion apparatus
and perfused (50 mmHg) retrogradely via the aorta with normal
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saline (10 ml/min, room temperature) for 2 min. When all residual
blood had been removed from the coronary arteries, the coronary
ligature was retightened at the same site and 5 ml of Zn–Cd fluo-
rescent particles (1–10 lm diameter, Duke Scientific Corp., Paolo
Alto, CA, USA, suspended in saline) were infused over 5 min for
the delineation of the normally perfused tissue from the risk zone.
Hearts were then frozen at )20�C and 24 h later they were sliced
into 3 mm thick sections from the apex to base. The slices were
incubated in 1% triphenyl tetrazolium chloride (TTC) in isotonic
phosphate buffer solution, pH 7.4 for 20 min at 37�C. TTC reacts
with dehydrogenase enzymes and nicotinamide adenine dinucleo-
tide in viable tissue; the infarcted area was defined as the negative
staining region. The heart slices were immersed in 10% formalde-
hyde solution for 24 h to delineate the infarcted areas more clearly.
For examination, the slices were pressed between glass plates; to
identify the borders between the risk zone and the normal area,
slices were examined under UV light (wavelength 366 nm). The
infarcted, the risk and the normal areas were traced onto an acetate
sheet, which had been placed over the top glass plate. The tracings
were then photographically enlarged and were subsequently scan-
ned with the Adobe Photoshop 6.0 and measured with the Scion
Image program. The areas of myocardial tissue at risk and of
infarction were automatically transformed into volumes by multi-
plying the corresponding areas by thickness (3 mm). Infarct and
risk area volumes were expressed in cm3 and the percent of infarct
to risk area ratio (%I/R) was calculated.

Tissue sample preparation

Five or twenty minutes after the beginning of prolonged ischemia
and 20 min after the onset of reperfusion, two small heart samples
were rapidly removed, one from the center of the area at risk and
another one from the opposite non-ischemic area (postero-inferior
wall and part of the right ventricle), and immediately immersed
into liquid nitrogen. They were then stored at )80 �C until the
subsequent analyses. The tissue samples were homogenized
with 3 v/wt of extraction buffer (20 mM Tris/HCl, pH 7.5, 20 mM
b-glycerophosphate, 20 mM NaF, 2 mM EDTA, 0.2 mM Na3VO4,
5 mM dithiothreitol (DTT), 10 mM benzamidine, 200 lM leupep-
tin, 120 lM pepstatin A, 10 lM trans-epoxy succinyl-L-leucylami-
do-(4-guanidino)butane, 300 lM phenyl methyl sulfonyl fluoride
(PMSF), and 0.5% (v/v) Triton X-100) and extracted on ice for
30 min. The samples were centrifuged (10,000g, 5 min, 4 �C) and

the supernatants were boiled with 0.33 vol. of SDS/PAGE sample
buffer (0.33 M Tris/HCl, pH 6.8, 10% (w/v) SDS, 13% (v/v) glycerol,
20% (v/v) 2-mercaptoethanol, and 0.2% (w/v) bromophenol blue).
Protein concentrations were determined using the Bradford assay
(BioRad, Hercules, California 94547, USA).

Immunoblotting

Proteins were separated by SDS-PAGE on 10% (w/v) acrylam-
ide, 0.275% (w/v) bisacrylamide slab gels and transferred
electrophoretically onto nitrocellulose membranes (0.45 lm,
Schleicher & Schuell, Keene N.H. 03431, USA). Non-specific bind-
ing sites on the membranes were blocked with 5% (w/v) non-fat
milk in TBST (20 mM Tris/HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v)
Tween 20) for 30 min at room temperature. Subsequently, the
membranes were incubated with a mouse monoclonal antibody
recognizing the dually phosphorylated forms of ERK1/2, p38 MAPK
or JNKs (Cell Signaling, Beverly, MA) according to the manufac-
turer’s instructions. After washing in TBST, the blots were incu-
bated with horseradish peroxidase-linked anti-mouse IgG antibody
(DAKO A/S Glostrup, Denmark) for 1 h at room temperature. The
blots were washed again in TBST and the bands were detected using
ECL (Santa Cruz) with exposure to X-OMAT AR film (Eastman
Kodak Company, New York, 14650, USA). Blots were quantified by
laser scanning densitometry.

Statistical analysis

Values are expressed as mean ± SEM. Infarct sizes were plotted
against risk zone volumes for all groups, and regression lines for
groups with interventions were compared with the regression line
for the control group by analysis of covariance with Bonferroni’s
correction for multiple comparisons. Statistical analysis was per-
formed using the statistical package SPSS vr 10.00 (Statistical
Package for the Social Sciences) and for all tests, a probability of
<0.05 was considered statistically significant. Hemodynamic and
MAPK phosphorylation data were compared by two-way ANOVA.
When significant differences were detected, individual mean values
were compared by Tukey test. A probability of P < 0.05 was con-
sidered significant.

Results

j Hemodynamic variables

Mean heart rate and mean blood pressure at baseline,
at the end of index ischemia and at the end of rep-
erfusion are shown in Table 1. No significant differ-
ences were observed between the groups at various
time points.

j Infarct size

The effect of various interventions on infarct size is
shown in Fig. 2. The infarcted to risk ratio was
47.6 ± 3.4% in the control group and 13.9 ± 1.7% in
the IPC group (P < 0.01). The infarct size did not
differ between the nitroglycerin-treated groups
(23.77 ± 4.58% in ENTG10, 34.5 ± 4.1% in ENTG30
and 27.4 ± 2.7% in LNTG). However, the infarct size
was significantly smaller in all three nitroglycerin-
preconditioned groups compared to the control

Fig. 1 Experimental protocol for the study of the effect of ischemic and
nitroglycerin-induced preconditioning on infarct size and MAPK phosphoryla-
tion. IPC: Ischemic preconditioning; ENTG10: Early nitroglycerin preconditioning
with 10 min interval between nitroglycerin infusion and ischemia induction;
ENTG30: Early nitroglycerin preconditioning with 30-min interval between
nitroglycerin infusion and ischemia induction; LNTG: Late nitroglycerin
preconditioning

E.K. Iliodromitis et al. 329
MAPKs in ischemic and nitroglycerin-induced preconditioning



(P < 0.05 for ENTG30 and P < 0.01 for ENTG10 and
LNTG) but significantly larger compared to the
ischemic preconditioned group (P < 0.01 for ENTG30
and P < 0.05 for ENTG10 and LNTG). Infarct sizes
were plotted against risk zone volumes for all groups
(Fig. 3). The regression lines for ischemic precondi-
tioned and nitroglycerin-treated hearts were different
from the regression line for control hearts (P < 0.05).

j Activation of MAPKs

Activation of p38 MAPK, p46/p54 JNKs and ERK1/2,
as evidenced by their dual phosphorylation, was
determined after 5 and 20 min of prolonged ischemia
and after 20 min of the reperfusion following 30-min
ischemia, in all groups. For each group, phosphory-
lation of the kinases was determined in ventricular
samples obtained from both the ischemic and non-
ischemic regions of the heart. The basal levels of

phosphorylation of the kinases in these regions were
determined in samples obtained from control hearts
that were not subjected to any interventions (Fig. 4).
At early stages of ischemia (5 min), a robust increase
in the phosphorylation of p38 MAPK was observed in
the ischemic preconditioned group (12.69 ± 1.9-fold
comparing ischemic to non-ischemic regions) and the
early-treated nitroglycerin groups (about 12.01 ± 1.27
in ENTG10 and 12.89 ± 2.25 in ENTG30) as compared
with the non-preconditioned control group (Fig. 5).
The phosphorylation of the kinase remained in-
creased, although at significantly lower levels, in the
IPC and ENTG10 groups after 20 min of prolonged
ischemia. On the other hand, phosphorylation of p38
MAPK was not different from the control in the LNTG
group determined at 5 min of prolonged ischemia,
whereas it was significantly increased after 20 min of
ischemia (8.1 ± 2.15-fold comparing ischemic to non-
ischemic region). The phosphorylation of p38 MAPK

Table 1 Hemodynamic variables of the different groups of the study at baseline, the end of sustained ischemia and 120-min reperfusion

Baseline Ischemia Reperfusion

HR MBP HR MBP HR MBP

Control 280.0 ± 7.9 75.0 ± 3.9 280.7 ± 7.3 67.7 ± 4.1 263.6 ± 7.6 64.1 ± 3.2
IPC 281.6 ± 6.0 75.3 ± 3.9 280.0 ± 8.1 67.5 ± 3.2 259.1 ± 6.9 66.3 ± 3.1
ENTG10 285.8 ± 8.0 77.3 ± 3.8 281.7 ± 6.0 69.0 ± 2.7 254.2 ± 8.8 61.7 ± 3.2
ENTG30 274.4 ± 3.7 73.9 ± 3.4 277.5 ± 4.4 70.2 ± 3.5 258.7 ± 2.3 66.6 ± 3.0
LNTG 285.0 ± 3.8 78.6 ± 2.5 282.5 ± 2.5 74.5 ± 2.5 266.2 ± 5.0 63.2 ± 2.1

HR: Heart rate in beats/min; MBP: Mean blood pressure in mmHg. IPC: Ischemic preconditioning; ENTG10: Early nitroglycerin preconditioning (60-min infusion, started
90 min and ended 30 min before index ischemia); ENTG30: Early nitroglycerin preconditioning (60-min infusion, started 70 min and ended 10 min before index
ischemia); LNTG: Late nitroglycerin preconditioning (60-min infusion ended 24 h before index ischemia)

Fig. 2 The effect of various interventions on infarct size (expressed as a
percent of risk zone size) in rabbit hearts following 30-min ischemia and 180-
min reperfusion. Squares represent individual experiments, circles depict group
means with SEM. IPC: Ischemic preconditioning; ENTG10: Early nitroglycerin
preconditioning (60-min infusion ending 10 min before index ischemia);
ENTG30: Early nitroglycerin preconditioning (60-min infusion ending 30 min
before index ischemia); LNTG: Late nitroglycerin preconditioning (60-min
infusion ending 24 h before index ischemia). *P < 0.01 vs. control; #P < 0.05
vs. control; §P < 0.01 vs. IPC; ^P < 0.05 vs. IPC

Fig. 3 Infarct size plotted against risk zone for control, ischemic precondi-
tioned and early and late nitroglycerin-treated hearts. Control (closed squares);
IPC (closed triangles): Ischemic preconditioning; ENTG10 (open diamonds): Early
nitroglycerin preconditioning (60-min infusion ending 10 min before index
ischemia); ENTG30 (open circles): Early nitroglycerin preconditioning (60-min
infusion ending 30 min before index ischemia); LNTG (closed circles): Late
nitroglycerin preconditioning (60-min infusion ending 24 h before index
ischemia). Regression lines for the control hearts are significantly different from
that for all the other hearts (P < 0.05)
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did not vary significantly among the groups after
20 min of reperfusion (Fig. 5).

IPC resulted in a significant increase in the
phosphorylation level of JNKs at 5 min and 20 min
of ischemia (4.57 ± 1.12-fold and 6.79 ± 0.60-fold,
respectively) whereas nitroglycerin treatment had no
effect (Fig. 6). At reperfusion, increased levels of
JNK phosphorylation were observed not only in the
IPC group but also in control and the early-treated
nitroglycerin groups, ENTG10 and ENTG30. How-
ever, phosphorylation of JNKs remained at low levels
either during ischemia or at reperfusion in the LNTG
group.

The phosphorylation level of ERK1/2 was also
determined by immunoblotting during sustained
ischemia and reperfusion, in control, ischemic pre-
conditioned and nitroglycerin-treated groups. No
change in ERK1/2 phosphorylation between ischemic
and non-ischemic regions of the heart was detectable
in any of the groups at early ischemia (Fig. 7).
Similarly, no change in ERK1/2 phosphorylation was
observed in the control, preconditioned or early
nitroglycerin-treated groups at 20 min of ischemia.
However, a significant increase (about 3-fold, com-
paring ischemic to non-ischemic regions) in the
phosphorylation level of ERK1/2 was observed in the
late phase of nitroglycerin-treated hearts. Reperfusion
of the hearts resulted in a significant increase in the
phosphorylation of ERK1/2 in all groups as compared
with the non-preconditioned control at the same time
point (Fig. 7).

Discussion

The present study demonstrates that 60 min of
intravenous administration of nitroglycerin is capable
of inducing both early and late phase preconditioning
in anesthetized rabbits, as it is expressed by the
reduction of the infarct size. Furthermore, despite the
cardioprotective effect conferred by ischemic and
pharmacological preconditioning, there is a differen-
tial phosphorylation of MAPKs (p38 MAPK, JNKs,
ERK1/2) between the studied groups.

The cardioprotective effect of IPC occurs in two
phases called early or classic and late or second window
of protection. The first is immediate and lasts for a few
hours while the delayed phase, which is weaker, starts
24 h after a sub-lethal ischemic insult and lasts 72 h [2,

Fig. 4 Phosphorylation levels of p38 MAPK, JNKs and ERK1/2 in samples
obtained from the LV (1), the RV (2) and the postero-inferior wall (3) of control
hearts not subjected to any interventions. Phosphorylated kinases were
detected by immunoblotting. Representative blots are shown. The experiment
was repeated three more times with comparable results

Fig. 5 Analysis of the phosphorylation state of p38 MAPK in the non-ischemic
(N) and ischemic (I) regions of the heart after 5 and 20 min of sustained
ischemia and 20 min of reperfusion. (A) Phosphorylated p38 MAPK was
detected by immunoblotting with an antibody specific to the dually
phosphorylated form of the kinase. Representative blots are shown. (B) Blots
were quantified by laser densitometry. Each point is the mean ± SEM of four
independent observations. *P < 0.01 vs. control at the same time point;
#P < 0.05 vs. control at the same time point. IPC: Ischemic preconditioning;
ENTG10: Early nitroglycerin preconditioning (60-min infusion ending 10 min
before index ischemia); ENTG30: Early nitroglycerin preconditioning (60-min
infusion ending 30 min before index ischemia); LNTG: Late nitroglycerin
preconditioning (60-min infusion ending 24 h before index ischemia)
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3]. In recent years, several pharmacological agents have
been identified that can substitute for the short ische-
mic insults but this approach has been met with varying
success, probably due to the complex intracellular
transduction signaling [33, 42]. Nitroglycerin, which is
an NO-releasing drug extensively used in the treatment
of coronary artery disease, has been previously tested
as a pharmacological analogue of preconditioning [18].
Although endogenous NO is not necessary for ische-
mia-induced early preconditioning [27, 31], exogenous
NO can elicit a preconditioning-like protection [32].
Furthermore, considerable evidence indicates a critical
role for NO in the late preconditioning [5]. The results
of the present study confirm previous observations that
pre-treatment with nitroglycerin induces early and
delayed cardioprotection in different species [19, 44].

Moreover, studies in humans have shown that nitro-
glycerin induces delayed preconditioning and protects
the myocardium against ischemic injury in patients
undergoing coronary angioplasty; the ability of nitro-
glycerin to elicit delayed preconditioning is not ham-
pered by the presence of tolerance to the hemodynamic
actions of nitrates [19, 23].

The elucidation of the factors involved in the signal
transduction pathway of preconditioning has been the
subject of intense investigation and although the
participation of PKC and KATP channels [7, 9, 10, 16]
is well established, their relevance and the sequence of
activation remain controversial. Functional evidence
indicates that NO plays a prominent role both in
initiating and mediating the protective responses of
late preconditioning in the myocardium probably

Fig. 6 Analysis of the phosphorylation state of p46/p54 JNKs in the non-
ischemic (N) and ischemic (I) regions of the heart after 5 and 20 min of
sustained ischemia and 20 min of reperfusion. (A) Phosphorylated JNKs were
detected by immunoblotting with an antibody specific to the dually
phosphorylated form of the kinases. Representative blots are shown. (B)
Blots were quantified by laser densitometry. Each point is the mean ± SEM
of four independent observations. *P < 0.01 vs. control at the same time
point; #P < 0.05 vs. control at the same time point. IPC: Ischemic
preconditioning; ENTG10: Early nitroglycerin preconditioning (60-min infusion
ending 10 min before index ischemia); ENTG30: Early nitroglycerin
preconditioning (60-min infusion ending 30 min before index ischemia);
LNTG: Late nitroglycerin preconditioning (60-min infusion ending 24 h
before index ischemia)

Fig. 7 Analysis of the phosphorylation state of ERK1/2 in the non-ischemic (N)
and ischemic (I) regions of the heart after 5 and 20 min of sustained ischemia
and 20 min of reperfusion. (A) Phosphorylated ERK1/2 were detected by
immunoblotting with an antibody specific to the dually phosphorylated form of
the kinases. Representative blots are shown. (B) Blots were quantified by laser
densitometry. Each point is the mean±SEM of four independent observations.
*P<0.05 vs. control at the same time point; #P<0.05 vs. control at the same
time point. IPC: Ischemic preconditioning; ENTG10: Early nitroglycerin
preconditioning (60-min infusion ending 10 min before index ischemia);
ENTG30: Early nitroglycerin preconditioning (60-min infusion ending 30 min
before index ischemia); LNTG: Late nitroglycerin preconditioning (60-min
infusion ending 24 h before index ischemia)
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through the activation of PKC [1, 5, 30]. So, it seems
that PKC plays a central role in the signaling of
both ischemic and pharmacological preconditioning.
However, a complex network of other protein kinases,
particularly the stress-related MAPKs, has been
increasingly implicated in triggering and mediating
cardiac preconditioning although considerable con-
troversy surrounds their precise role [25, 33]. In the
present study we sought to determine the activation of
MAPKs (p38, p46/p54 JNKs and ERK1/2) in ischemic
and nitroglycerin-induced preconditioning and cor-
relate this activation with the degree of protection
observed. IPC and nitroglycerin-induced precondi-
tioning exhibit a differential profile of MAPK phos-
phorylation. p38 MAPK is activated in both ischemic
and the early nitroglycerin-induced preconditioning
during early ischemia while JNKs are markedly in-
creased during sustained ischemia only after IPC.
Furthermore, ERK1/2 are activated at reperfusion in
all groups where protection is observed. ERK1/2
activation during ischemia is detected only in the late
preconditioning induced by nitroglycerin.

The role of p38 MAPK in acute preconditioning
has been extensively studied, although conflicting
results have been obtained. We, and others, have
previously shown that the phosphorylation and
hence activation of p38 MAPK increases in condi-
tions where there is protection of the heart as is the
case in ischemic and mechanically induced precon-
ditioning in vivo [21, 41]. In the present study, we
showed that the phosphorylation of p38 MAPK also
increases in the nitroglycerin-induced precondition-
ing (Fig. 5). Maximal p38 MAPK activation was
comparable in the preconditioned and the early-
nitroglycerin groups and it was observed during
early ischemia (5 min). However, it appears that
there is no correlation between the degree of pro-
tection and the level of activation of p38 MAPK
(Figs. 2, 4) and this is in accordance with previous
studies [4, 21, 37]. It should be mentioned that, in
this study, we did not differentiate between p38
MAPK isoforms although there is evidence that p38a
and p38b MAPK activities are differentially activated
by preconditioning [34]. Increased p38 MAPK
phosphorylation was also observed in the late
nitroglycerin-treated group (Fig. 5). In this case,
however, the maximal activation was shifted to late
ischemia. Very few studies exist with respect to the
role of p38 MAPK in the late preconditioning. In-
creased phosphorylation of p38 MAPK was observed
24 h after stimulation of adenosine A1 receptors in
the rabbit, mouse and rat hearts suggesting this
pathway as a potential distal effector of late pre-
conditioning [8, 43]. In addition, it has been shown
[6] that late preconditioning in human atrial myo-
cytes could be prevented by SB203580.

Few reports have investigated the importance of
JNKs in cardioprotection. JNKs have been impli-
cated in the signal transduction cascade of IPC in
rats [13] and rabbits [21, 29]. In agreement with
these studies, the phosphorylation state of JNKs was
significantly increased during prolonged ischemia in
the preconditioned hearts compared with the con-
trols (Fig. 6). However, this effect was not observed
in the early nitroglycerin-treated groups although
JNKs phosphorylation at 20-min ischemia in the
ENTG10 group tends to be higher than control. The
increase in JNKs phosphorylation during ischemia
in the preconditioned animals may account for the
greater reduction in infarct size observed in these
animals vs. animals treated with nitroglycerin. Fryer
et al. [13] suggested that activation of JNKs during
early reperfusion may be important for cardiopro-
tection. However, the results of the present study do
not support this notion since increased JNKs
phosphorylation was also observed in control hearts
during reperfusion. In addition, we could not detect
any significant effect of nitroglycerin-induced pre-
conditioning, in the late phase, on the activation of
JNKs (Fig. 6). To our knowledge, there is no evi-
dence that JNKs are activated during the delayed
phase of ischemic or pharmacological precondi-
tioning.

The ERK pathway is the best studied from all
MAPK subfamilies and it has been implicated in cell
survival. A robust increase in ERK1/2 phosphoryla-
tion was observed at reperfusion after sustained
ischemia in all groups compared to control (Fig. 7),
implicating these kinases in the protection. Previous
studies have shown that IPC induces a potent acti-
vation of ERK1/2 pathway during the reperfusion
phase after lethal ischemia and that these kinases are
essential for IPC-induced protection [17]. Further-
more, increased ERK1/2 phosphorylation at reperfu-
sion was observed in opioid-induced cardioprotection
[14]. Other studies have shown activation of ERK1/2,
when determined after the ischemia/reperfusion per-
iod of preconditioning [14, 17, 28], which declines
during sustained ischemia [14, 17]. We could not
detect any change in ERK1/2 phosphorylation during
sustained ischemia in the IPC or the early nitroglyc-
erin-treated groups (Fig. 7) and this is in accordance
with previous reports [21, 36]. However, a robust
activation of both ERK isoforms was detected in the
late phase of nitroglycerin-induced preconditioning
implicating the kinase in the protection (Fig. 7). In
support of this notion, it has been shown that delayed
preconditioning induced by adenosine is mediated by
both ERK and p38 MAPK activation in the rat heart in
vivo [22] whereas inhibition of ERK1/2 by PD098059
blocked delta-opioid agonist delayed preconditioning
in in vivo rat myocardium [12].
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In conclusion, the results of the present study
suggest that nitroglycerin induces early and late
preconditioning in anesthetized rabbits. Protection is
weaker than the IPC and it is accompanied by a dif-
ferential degree of phosphorylation of the various
MAPKs. Further studies are required to assess the

precise role of individual MAPK pathways in nitro-
glycerin-induced preconditioning.
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